Abstract

Twelve steers fitted with rumen cannulas were used in three separate experiments to investigate the effects of the presence or absence of rumen ciliate protozoa on methane production. The diet consisted of 850 g barley and 150 g protein supplement/kg, and was given in three feeds daily at a restricted level of 61 g/kg live weight 0.75. Animals were defaunated initially by allowing ad lib. consumption of this diet and were then maintained ciliate-free by isolation or were faunated by inoculation with a mixed ciliate suspension. Samples of rumen fluid were taken routinely for the assessment of microbial populations and for volatile fatty acid (VFA) analysis and energy and nitrogen balances and digestibility measurements were made at intervals while animals were confined in respiration chambers. In each experiment the rumen VFA proportions changed from a high-propionate pattern under ciliate-free conditions to a low-propionate, high-butyrate pattern in the presence of ciliates: differences between treatments were highly significant (P less than 0.001). There were also marked differences between treatments in CH4 production but a reliable comparison was possible only in Expt 3, in which CH4 was significantly higher (P less than 0.001) in the presence of a rumen ciliate population. In Expt 3 the increased loss of energy as CH4 in the faunated animals amounted to 4.8 MJ/100 MJ energy intake. Stoichiometric estimates of CH4 production derived from the observed VFA proportions showed good agreement with CH4 production as measured in respiration chambers. On average, the stoichiometric CH4 values overestimated CH4 production by a factor of 1.08. Highly significant linear relationships (P less than 0.001) were observed between the molar proportion of each major VFA and the quantity of CH4 produced: the proportion of propionic acid was inversely related to CH4 and showed the lowest residual standard deviation of all the relationships examined. The losses of energy in faeces and urine did not differ between treatments hence the increased loss of energy as CH4 in the faunated animals resulted in a significant reduction in the metabolizability of the diet from 0.73 to 0.69 (P less than 0.05). No significant differences were detected between treatments in heat production, apparent digestibility coefficients or N balance. It is suggested that the rumen ciliates, by modifying the rumen VFA proportions, are directly responsible for the increased CH4 production in faunated animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.