Abstract

For the understanding and assessment of recent and future carbon dynamics of arctic permafrost soils the processes of CH(4) production and oxidation, the community structure and the quality of dissolved organic matter (DOM) were studied in two soils of a polygonal tundra. Activities of methanogens and methanotrophs differed significantly in their rates and distribution patterns among the two investigated profiles. Community structure analysis showed similarities between both soils for ester-linked phospholipid fatty acids (PLFAs) and differences in the fraction of unsaponifiable PLFAs and phospholipid ether lipids. Furthermore, a shift of the overall composition of the microbiota with depth at both sites was indicated by an increasing portion of iso- and anteiso-branched fatty acids related to the amount of straight-chain fatty acids. Although permafrost soils represent a large carbon pool, it was shown that the reduced quality of organic matter leads to a substrate limitation of the microbial metabolism. It can be concluded from our and previous findings first that microbial communities in the active layer of an Arctic polygon tundra are composed by members of all three domains of life, with a total biomass comparable to temperate soil ecosystems, and second that these microorganisms are well adapted to the extreme temperature gradient of their environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.