Abstract

Methane (CH4) is emerging as a candidate of signal molecule recently. However, whether or how CH4 enhances plant adaptation to aluminum (Al)-contaminated environment is still unknown. In this report, the physiological roles and possible molecular mechanisms of CH4 in the modulation of Al toxicity in alfalfa seedlings were characterized. Our results showed that, CH4 pretreatment could alleviate Al-induced seedling growth inhibition and redox imbalance. The defensive effects of CH4 against Al toxicity including the remission of Al-induced root elongation inhibition, nutrient disorder, and relative electrolyte leakage. Moreover, contents of organic acids, including citrate, malate, and oxalate, were increased by CH4. These results were paralleled by the findings of CH4 regulated organic acids metabolism and transport genes, citrate synthase, malate dehydrogenase, aluminum-activated malate transporter, and aluminum activated citrate transporter. Consistently, Al accumulation in seedling roots was decreased after CH4 treatment. In addition, Al-induced oxidative stress was also alleviated by CH4, through the regulation of the activities of anti-oxidative enzymes, such as ascorbate peroxidase, superoxide dismutase, and peroxidase, as well as their corresponding transcripts. Our data clearly suggested that CH4 alleviates Al toxicity by reducing Al accumulation in organic acid-dependent fashion, and reestablishing redox homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.