Abstract

Irrigation in the Mediterranean region has been used for millennia and has greatly expanded with industrialization. Irrigation is critical for climate change adaptation, but it is also an important source of greenhouse gas emissions. This study analyzes the carbon (C) footprint of irrigation in Spain, covering the complete historical process of mechanization. A 21-fold total, 6-fold area-based, and 4-fold product-based increase in the carbon footprint was observed during the 20th century, despite an increase in water use efficiency. CH4 emissions from waterbodies, which had not previously been considered in the C footprint of irrigation systems, dominated the emission budget during most of the analyzed period. Technologies to save water and tap new water resources greatly increased energy and infrastructure demand, while improvements in power generation efficiency had a limited influence on irrigation emissions. Electricity production from irrigation dams may contribute to climate change mitigation, but the amount produced in relation to that consumed in irrigation has greatly declined. High uncertainty in CH4 emission estimates from waterbodies stresses a need for more spatially resolved data and an improved empirical knowledge of the links between water quality, water level fluctuations, and emissions at the regional scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.