Abstract

Abstract. Arctic regions and their water bodies are affected by a rapidly warming climate. Arctic lakes and small ponds are known to act as an important source of atmospheric methane. However, not much is known about other types of water bodies in permafrost regions, which include major rivers and coastal bays as a transition type between freshwater and marine environments. We monitored dissolved methane concentrations in three different water bodies (Lena River, Tiksi Bay, and Lake Golzovoye, Siberia, Russia) over a period of 2 years. Sampling was carried out under ice cover (April) and in open water (July–August). The methane oxidation (MOX) rate and the fractional turnover rate (k′) in water and melted ice samples from the late winter of 2017 was determined with the radiotracer method. In the Lena River winter methane concentrations were a quarter of the summer concentrations (8 nmol L−1 vs. 31 nmol L−1), and mean winter MOX rate was low (0.023 nmol L−1 d−1). In contrast, Tiksi Bay winter methane concentrations were 10 times higher than in summer (103 nmol L−1 vs. 13 nmol L−1). Winter MOX rates showed a median of 0.305 nmol L−1 d−1. In Lake Golzovoye, median methane concentrations in winter were 40 times higher than in summer (1957 nmol L−1 vs. 49 nmol L−1). However, MOX was much higher in the lake (2.95 nmol L−1 d−1) than in either the river or bay. The temperature had a strong influence on the MOX (Q10=2.72±0.69). In summer water temperatures ranged from 7–14 ∘C and in winter from −0.7 to 1.3 ∘C. In the ice cores a median methane concentration of 9 nM was observed, with no gradient between the ice surface and the bottom layer at the ice–water interface. MOX in the (melted) ice cores was mostly below the detection limit. Comparing methane concentrations in the ice with the underlaying water column revealed methane concentration in the water column 100–1000 times higher. The winter situation seemed to favor a methane accumulation under ice, especially in the lake with a stagnant water body. While on the other hand, in the Lena River with its flowing water, no methane accumulation under ice was observed. In a changing, warming Arctic, a shorter ice cover period is predicted. With respect to our study this would imply a shortened time for methane to accumulate below the ice and a shorter time for the less efficient winter MOX. Especially for lakes, an extended time of ice-free conditions could reduce the methane flux from the Arctic water bodies.

Highlights

  • Worldwide, the mixing ratio of methane has been increasing rapidly since 2000, from 2.1 ppb yr−1 for the time span 2000–2009 to 6.6 ppb yr−1 for the time span 2008– 2017 and to 6.1 ppb yr−1 in 2017 (Saunois et al, 2020)

  • Bussmann et al.: Methane dynamics in three different Siberian water bodies methane emissions are estimated by a top-down approach to be 576 Tg CH4 yr−1 (Saunois et al, 2020)

  • In winter 2017, in addition to water sampling, we investigated ice cores for their methane content and methane oxidation rates

Read more

Summary

Introduction

The mixing ratio of methane has been increasing rapidly since 2000, from 2.1 ppb yr−1 for the time span 2000–2009 to 6.6 ppb yr−1 for the time span 2008– 2017 and to 6.1 ppb yr−1 in 2017 (Saunois et al, 2020). A probable explanation is increased methane emissions from wetlands, both in the tropics (Nisbet et al, 2016) and in the Arctic (Fisher et al, 2011), and from other Arctic water bodies (Walter Anthony et al, 2016; Kohnert et al, 2018) or geological methane emissions (Kohnert et al, 2017). In the Arctic, the mean atmospheric methane mixing ratio increased by 6 ppb yr−1 from 2001 to 2017, resulting in an atmospheric mole fraction of 1939 ppb in 2017 at Svalbard (Platt et al, 2018) and with a median of 1932 ppb in 2017 for Tiksi (Hydrometeorological Observatory of Tiksi, Russia). Saunois and co-authors estimated increased methane emission for freshwater systems and wetlands, but a better quantification of the emissions of different contributors (streams, rivers, lakes, and ponds) is needed (Saunois et al, 2016)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call