Abstract

Methane decomposition has been extensively investigated using a Q-switched Nd:YAG laser, focused on the metal catalysts including Ni, Fe, Pd, and Cu within the controlled chamber to verify the effect of catalyst, plasma properties, and yield and selectivity of the products. Fourier transform IR spectroscopy (FTIR) and gas chromatography (GC) are employed to support the characterization of the components. This indicates that methane is strongly decomposed within the metal-assisted laser-induced plasma, leading to the subsequent recombination and the production of heavier hydrocarbons. The dominant species, including propane, ethane, and ethylene, have been identified examining different metallic catalysts. The dissociation rate, conversion ratio, selectivity, and yield of products are strongly dependent on the metal target and plasma characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call