Abstract

Hydrogen sulfide (H2S) is well known as a gaseous signal in response to heavy metal stress, while methane (CH4), the most prevalent greenhouse gas, confers cadmium (Cd) tolerance. In this report, the causal link between CH4 and H2S controlling Cd tolerance in alfalfa (Medicago sativa) plants was assessed. Our results observed that the administration of CH4 not only intensifies H2S metabolism, but also attenuates Cd-triggered growth inhibition in alfalfa seedlings, which were parallel to the alleviated roles in the redox imbalance and cell death in root tissues. Above results were not observed in roots after the removal of endogenous H2S, either in the presence of either hypotaurine (HT; a H2S scavenger) or DL-propargylglycine (PAG; a H2S biosynthesis inhibitor). Using in situ noninvasive microtest technology (NMT) and inductively coupled plasma mass spectroscopy (ICP-MS), subsequent results confirmed the participation of H2S in CH4-inhibited Cd influx and accumulation in roots, which could be explained by reestablishing glutathione (GSH) pool (reduced/oxidized GSH and homoglutathione) homeostasis and promoting antioxidant defence. Overall, our results clearly revealed that H2S operates downstream of CH4 enhancing tolerance against Cd stress, which are significant for both fundamental and applied plant biology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.