Abstract

Abstract The influences of residual chlorine ions and water on the performance of a Pd/Al2O3 catalyst in methane combustion have been studied. The results show that the catalyst containing Cl− exhibits a relatively low activity, and the addition of water to the reaction system accelerates the deactivation process. The catalyst has been characterized by N2 adsorption, X-ray fluorescence, Fourier transform infrared spectroscopy (FT-IR), and thermogravimetry (TG). The results show that the presence of Cl− appears to strongly inhibit the total oxidation of methane and hinder the dispersion of Pd on Al2O3. The formation of Pd(OH)2 during the reaction is the most likely reason for the inhibition effect of water, which is confirmed by FT-IR and TG analysis. The regeneration of the Pd/Al2O3 catalyst can be achieved by purging in nitrogen at 550 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.