Abstract

Adsorption of natural gas (methane) on the synthesized metal–organic framework (MOF) Al-BTC with specific surface area SBET = 1422 m2/g was studied at pressures up to 40 MPa and temperatures of 303, 313, 323, and 333 K. The maximum adsorption of methane on Al-BTC reaches 10.36 mmol/g at 303 K and 40 MPa, and the initial heat of adsorption is ~14 kJ/mol. The amount of methane accumulated in a system with Al-BTC attains a value of 120–130 m3(NTP)/m3 in a range of pressures from 3.5 to 10.0 MPa, which is the most relevant for methane accumulation. The volumes of methane stored in the systems with Al-BTC and without an adsorbent differ by a factor of about 2 at 3.5 MPa, there is almost no distinction between these options of methane storage at 7.0 and 20.0 MPa, and the amount of gas in the system without an adsorbent exceeds by 25% that in Al-BTC. The pressure range from 3.5 to 6.0 MPa is most efficient for the methane adsorption accumulation in the MOF structure Al-BTC. The absolute efficiency of methane adsorption accumulation increases with lowering of temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.