Abstract

Although methane is the dominant absorber in Titan's reflection spectrum, the amount of methane in the atmosphere has only been determined to an order of magnitude. We analyzed spectra from the Space Telescope Imaging Spectrograph, looking at both a bright surface region (700-km radius) and a dark surface region. The difference between the spectra of the two regions is attributed to light that has scattered off the surface, and therefore made a round-trip through all of Titan's methane. Considering only absorption, the shape of the difference spectrum provides an upper limit on methane abundance of 3.5 km-am. Modeling the multiple scattering in the atmosphere further constrains the methane abundance to 2.63±0.17 km-am. In the absence of supersaturation and with a simplified methane vertical profile, this corresponds to a surface methane-mole fraction near 3.8% and a relative humidity of 0.32. With supersaturation near the tropopause, the surface methane mole fraction could be as low as 3%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.