Abstract

Infrared tunable diode-laser absorption spectroscopy (IR-TDLAS) is an enabling technology for trace-gas detection, with applications ranging from air-quality monitoring to medical diagnostics. However, such sensors typically utilize discrete optical components that pose practical cost limits for large-scale network deployments. Here, we leverage silicon photonics technology to demonstrate IR-TDLAS on an integrated CMOS-compatible platform for methane (CH4) spectroscopy. Using near-IR (1650 nm) light from a distributed-feedback laser and an uncooled InGaAs detector, the evanescent optical field of a high-index contrast nanoscale silicon waveguide is used to probe ambient CH4, yielding Gaussian-noise-limited sub-100 parts-per-million by volume detection limits. Our results demonstrate the feasibility of chip-scale photonic integration for realizing compact, cost-effective, and versatile gas sensors capable of tackling diverse energy and environmental challenges, such as natural-gas leak quantification and localization for fugitive-emissions monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.