Abstract
Recently, the neurotoxicity of dopamine (DA) quinone formation by auto-oxidation of DA has focused on dopaminergic neuron-specific oxidative stress. In the present study, we examined DA quinone formation in methamphetamine (METH)-induced dopaminergic neuronal cell death using METH-treated dopaminergic cultured CATH.a cells and METH-injected mouse brain. In CATH.a cells, METH treatment dose-dependently increased the levels of quinoprotein (protein-bound quinone) and the expression of quinone reductase in parallel with neurotoxicity. A similar increase in quinoprotein levels was seen in the striatum of METH (4 mg/kg X4, i.p., 2 h interval)-injected BALB/c mice, coinciding with reduction of DA transporters. Furthermore, pretreatment of CATH.a cells with quinone reductase inducer, butylated hydroxyanisole, significantly and dose-dependently blocked METH-induced elevation of quinoprotein, and ameliorated METH-induced cell death. We also showed the protective effect of tyrosinase, which rapidly oxidizes DA and DA quinone to form stable melanin, against METH-induced dopaminergic neurotoxicity in vitro and in vivo using tyrosinase null mice. Our results indicate that DA quinone formation plays an important role, as a dopaminergic neuron-specific neurotoxic factor, in METH-induced neurotoxicity, which is regulated by quinone formation-related molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.