Abstract

Methamphetamine (METH) is a widely abused psychomotor stimulant known to cause dopaminergic neurotoxicity in rodents, nonhuman primates, and humans. METH administration selectively damages the dopaminergic nerve terminals, which is hypothesized to be due to release of dopamine from synaptic vesicles within the terminals. This process is believed to be mediated by the production of free radicals. The current study evaluates METH-induced dopaminergic toxicity in pheochromocytoma 12 (PC12) cells cultured in the presence or absence of nerve growth factor (NGF). Dopaminergic changes and the formation of 3-nitrotyrosine (3-NT), a marker for peroxynitrite production, were studied in PC12 cell cultures grown in the presence or absence of NGF after different doses of METH (100-1,000 microM). METH exposure did not cause significant alterations in cell viability and did not produce significant dopaminergic changes or 3-NT production in PC12 cells grown in NGF-negative media after 24 hours. However, cell viability of PC12 cells grown in NGF-positive media was decreased by 45%, and significant dose-dependent dopaminergic alteration and 3-NT production were observed 24 hours after exposure to METH. The current study supports the hypothesis that METH acts at the dopaminergic nerve terminals and produces dopaminergic damage by the production of free radical peroxynitrite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.