Abstract
Repeated high-dose injections of methamphetamine (METH) rapidly decrease dopamine uptake by the vesicular monoamine transporter-2 (VMAT-2) associated with dopaminergic nerve terminals, as assessed in nonmembrane-associated vesicles purified from striata of treated rats. The purpose of this study was to determine whether METH similarly affects vesicular uptake in the hippocampus; a region innervated by both serotonergic and noradrenergic neurons and profoundly affected by METH treatment. Results revealed that repeated high-dose METH administrations rapidly (within 1 h) reduced hippocampal vesicular dopamine uptake, as assessed in vesicles purified from treated rats. This reduction was likely associated with serotonergic nerve terminals because METH did not further reduce vesicular monoamine uptake in para-chloroamphetamine-lesioned animals. Pretreatment with the serotonin transporter inhibitor fluoxetine blocked both this acute effect on VMAT-2 and the decrease in serotonin content observed 7 days after METH treatment. In contrast, there was no conclusive evidence that METH affected vesicular dopamine uptake in noradrenergic neurons or caused persistent noradrenergic deficits. These findings suggest a link between METH-induced alterations in serotonergic hippocampal vesicular uptake and the persistent hippocampal serotonergic deficits induced by the stimulant.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacology and Experimental Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.