Abstract

Methamphetamine (METH) is a strong psychostimulant drug which can essentially affect different brain regions. Hippocampus as one of main components of limbic system plays key roles in processing of short term, long term and spatial memory. Herein, we explored the changes in behavior, synaptic transmission and hippocampal volume along with gliosis following METH treatment. Besides, using genome-wide expression profiling, we applied a pathway-based approach to detect significantly dysregulated signaling pathways. In this regard, we found that METH administration interrupts spatial memory and long term potentiation (LTP). Additionally, stereological analysis revealed a significant alteration in hippocampal volume along with increased gliosis upon METH treatment. We also identified several signaling cascades chiefly related to synaptic transmission which were considerably interrupted in the hippocampus of METH-treated rats. Taken together, our data suggests a potential link between behavioral disruptions and dysregulated signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.