Abstract
For molecular analysis in anatomically-specific brain regions for rodent studies, it is necessary to establish a fast and accurate procedure for tissue sampling to achieve high integrity and expression fidelity of extracted molecules. The present study was performed to examine suitability of whole brain fixation with methacarn and subsequent tissue sampling using punch-biopsy devices for gene expression analysis in rats. After fixation, each specific region, i.e., hippocampal dentate gyrus, corpus callosum, cingulate cortex or cerebellar vermis was collected, and the integrity and variability of expression data of extracted total RNAs and polypeptides were examined. Methacarn fixation, acetone fixation, and unfixed tissues were compared. Methacarn fixation resulted in high integrity of total RNAs sufficient for conducting global expression analysis and superior in terms of uniformity in the integrity among brain regions to that of acetone fixation. Extracted polypeptide after methacarn fixation revealed similar integrity to that without fixation or with acetone fixation. Methacarn fixation resulted in lower mRNA expression variability between samples than acetone fixation in microarray analysis. The fidelity of polypeptide expression was mostly equivalent between methacarn and acetone fixation in 2-dimensional differential in-gel electrophoresis, although the expression levels of a small number of polypeptides from acetone-fixed tissues were affected. These results suggest that whole brain fixation with methacarn retains advantages for global analyses of mRNAs and polypeptides in rodent studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.