Abstract

Polycystic ovary syndrome (PCOS) is an endocrine/metabolic disorder associated with insulin resistance (IR) and obesity. Endometria from women with PCOS present failures in insulin action, glucose uptake and signaling of insulin-sensitizing molecules, such as adiponectin, with consequences for reproduction. Metformin (MTF) treatment improves insulin signaling in endometrial tissues, but its mechanism is not fully understood. This study addresses the MTF effect, as well as adiponectin agonist action, on levels of molecules associated with insulin and adiponectin signaling pathways in endometrial tissue and cells, as assessed by immunohistochemistry and immunocytochemistry, respectively. Endometrial tissues were obtained from women and divided into five groups: Normal Weight (control); Obesity + IR; Obesity + IR + PCOS; Obesity + IR + MTF; Obesity + IR + PCOS + MTF. Endometrial cells stimulated with TNFα (as obesity-marker) were also used to partially emulate an obesity environment. The results showed low levels of insulin/adiponectin signaling in the endometria from women with obesity, IR and PCOS compared with the control group. MTF re-established these levels, independently of PCOS. TNFα-associated molecules were elevated in pathologic endometria, whereas MTF diminished these levels. The low levels of insulin/adiponectin molecules in endometrial cells treated with TNFα were reverted by MTF, similar to what was observed in the case of the adiponectin agonist. Therefore, independently of PCOS, MTF can re-establish levels of molecules involved in insulin/adiponectin signaling in endometrial cells, suggesting an improvement in insulin action and reproductive failures observed in endometria from women with obesity/PCOS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.