Abstract

BackgroundMetformin has been reported to function as the anti-tumor inhibiting the growth of different types of cancers, including bladder cancer. But there are few reports on the roles of Yap1, the key molecule of Hippo pathway, in the metformin induced inhibition of bladder cancer (BLCA). We are wondering if the inhibitory effect of metformin on bladder cancer is fulfilled via Yap1 and exploring the related mechanism.MethodsMTS and colony formation assays were used to explore the cellular viabilities and proliferation of BLCA cells challenged by metformin at different concentrations, in vitro. Flow Cytometry (FCM) was used to analyze the cell cycle and the cellular apoptosis of the BLCA cells. Western Blot was performed to detect the expressions of AMPKα, Yap1, CCND1, CCNE1/2 and CDK2/4/6 in the metformin-treated BLCA cell lines. RNAi method was used for the related genetic functional analysis. The relationships among Yap1, TEADs and CCNE1/2 were predicted and evaluated using bioinformatics, dual-luciferase reporter and co-immunoprecipitation (Co-IP) assays. For in vivo experiments, a xenograft model was used to investigate the effects of metformin on the proliferation of BLCA cells. And Immunohistochemistry (IHC) assay was performed to assess the expressions of CCNE1/2 and Yap1 proteins in the tumor tissues from the model.ResultsMetformin could inhibit the proliferation of the BLCA cells via inducing the G1 cell cycle arrest without apoptosis. And metformin upregulated the phosphorylated AMPKα and decreased the expressions of Yap1 and CCND1, CCNE1/2 and CDK4/6. AMPK inhibition by compound C (CC) restored the cell proliferation and the G1 cell cycle arrest induced by metformin, in vivo. Knockdown of YAP1 inhibited the proliferation of BLCA cells and caused the cell cycle arrest at G1 phase by decreasing the expressions of CCNE1/2 and other G1 phase related molecules, which has been restored by the Yap 5SA mutant. Bioinformatics analysis showed that trans-factor TEAD4 was highly expressed and positively associated with the expressions of CCNE1 and CCNE2 in BLCA and only TEAD4 was precipitated by Yap1 in the BLCA cells. Further studies demonstrated that Yap1 positively regulated both CCNE1 and CCNE2 expressions via forming complex with TEAD4. Furthermore, we observed that metformin inhibited the cell proliferation by decreasing the expressions of Yap1 and both CCNE1 and CCNE2 in xenograft model.ConclusionsThe results of our study reveal a new potential regulatory pathway in which metformin inhibits cell proliferation via AMPKα/Yap1/TEAD4/CCNE1/2 axis in BLCA cells, providing new insights into novel molecular therapeutic targets for BLCA.

Highlights

  • Metformin has been reported to function as the anti-tumor inhibiting the growth of different types of cancers, including bladder cancer

  • We found that metformin inhibited the proliferation of bladder cancer (BLCA) cells by arresting cells at G1 phase through activating Adenosine 5′-monophosphate (AMP) dependent protein kinase (AMPK) and inhibiting Yes-associated protein 1 (Yap1) expression which resulted in the reduced the expression of Cyclin E1 (CCNE1)/2 at transcriptional level directly

  • At the time point of 24 h, only metformin at 20 mM can inhibit the cell proliferation of T24, SW780 and 5637 (Additional 1: Figure S1A); And after 48 h, ≥10 mM metformin begins to show the inhibitory effects on the cell proliferation in all the BLCA cell lines (Fig. 1a and Additional file 1: Figure S1A), which were comparable with concentrations used in previous studies

Read more

Summary

Introduction

Metformin has been reported to function as the anti-tumor inhibiting the growth of different types of cancers, including bladder cancer. There are few reports on the roles of Yap, the key molecule of Hippo pathway, in the metformin induced inhibition of bladder cancer (BLCA). We are wondering if the inhibitory effect of metformin on bladder cancer is fulfilled via Yap and exploring the related mechanism. Finding a therapeutic strategy of preventing bladder carcinoma progression and recurrence is required urgently. It’s well known that the deregulated cellular energetic metabolism is a key hallmark of cancer, and the metabolic reprogramming in cancer has been the focus of cancer research over the last decade. AMPK plays a central role in regulating metabolic pathways and the fast response of the cell to energetic changes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.