Abstract
Cytochrome P450 aromatase (encoded by the CYP19A1/aromatase gene) plays a critical physiologic role in endometriosis. Metformin is known to suppress prostaglandin E2 (PGE2)-induced CYP19A1 messenger RNA (mRNA) expression in human endometriotic stromal cells (ESCs). However, the possible mechanism behind this suppression remains to be determined. In this study, ESCs were cultured with metformin, PGE2, and adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitors. Expression of CYP19A1 mRNA and aromatase activity were measured by quantitative polymerase chain reaction and aromatase activity assay, respectively. The binding of the cyclic AMP response element-binding (CREB) protein to CYP19A1 promoter II (PII) was assessed by chromatin immunoprecipitation assay. We demonstrated that metformin downregulated the expression of aromatase mRNA (32%) and activity (25%) stimulated by PGE2 (4.18-fold and 2.14-fold) in ESCs via stimulation of AMPK. Following PGE2 treatment, there was a marked increase in CREB binding to aromatase PII, while metformin attenuated the above-mentioned stimulation by 67%. Metformin could inhibit PGE2-induced CYP19A1 mRNA expression and aromatase activity via AMPK activation and inhibition of CREB to CYP19A1 PII in human ESCs. The results of the present study suggest that metformin may have unique therapeutic potential as an antiendometriotic drug in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.