Abstract
Metformin has beneficial effects of preventing and treating cancers on type 2 diabetic patients. However, the role of metformin in non-diabetic cancer patients and the precise molecular mechanisms against cancer have not yet been sufficiently elucidated. We recently reported that the pseudokinase protein TRIB3 acts as a stress sensor linking metabolic stressors to cancer promotion by inhibiting autophagy and ubiquitin-proteasomal degradation systems; genetically abrogating of TRIB3 expression reduces tumourigenesis and cancer progression. Thus, TRIB3 is a potential therapeutic target for diverse cancers. In this study, we found that metformin attenuates melanoma growth and metastasis by reducing TRIB3 expression in non-diabetic C57BL/6 mice and diabetic KK-Ay mice; overexpression of TRIB3 protects metformin from the activation of autophagic flux, the clearance of accumulated tumour-promoting factors and the attenuation of tumour progression. We further elucidated that TRIB3 acts as an adaptor to recruit lysine acetyltransferase 5 (KAT5) to SMAD3 and induce a phosphorylation-dependent K333 acetylation of SMAD3, which sustains transcriptional activity of SMAD3 and subsequently enhances TRIB3 transcription. Metformin suppresses SMAD3 phosphorylation and decreases the KAT5/SMAD3 interaction, to attenuate the KAT5-mediated K333 acetylation of SMAD3, reduce the SMAD3 transcriptional activity and subsequent TRIB3 expression, thereby antagonizes melanoma progression. Together, our study not only defines a molecular mechanism by which metformin protects against melanoma progression by disturbing the KAT5/TRIB3/SMAD3 positive feedback loop in diabetes and non-diabetes mice, but also suggests a candidate diverse utility of metformin in tumour prevention and therapy because of suppressing stress protein TRIB3 expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.