Abstract
Blood cells are considered an important distributional compartment for metformin based on the high blood-to-plasma partition ratio (B/P) in humans (>10 at Cmin). However, literature reports of metformin's intrinsic in vitro B/P values are lacking. At present, the extent and rate of metformin cellular partitioning was determined in incubations of fresh human and rat blood with [(14)C]metformin for up to 1 week at concentrations spanning steady-state plasma Cmin, Cmax, and a concentration associated with lactic acidosis. The results showed that metformin's intrinsic equilibrium B/P was ∼0.8-1.4 in blood, which is <10% of the reported clinical value. Kinetics of metformin partitioning into human blood cells and repartitioning back into plasma were slow (repartitioning half-life ∼32-39 hours). These data, along with in vivo rapid and efficient renal clearance of plasma metformin (plasma renal extraction ratio ∼90%-100%), explain why the clinical terminal half-life of metformin in plasma (6 hours) is 3- to 4-fold shorter than the half-life in whole blood (18 hours) and erythrocytes (23 hours). The rate constant for metformin repartitioning from blood cells to plasma (∼0.02 h(-1)) is far slower than the clinical renal elimination rate constant (0.3 h(-1)). Blood distributional rate constants were incorporated into a metformin physiologically-based pharmacokinetic model, which predicted the differential elimination half-life in plasma and blood. The present study demonstrates that the extent of cellular drug partitioning in blood observed in a dynamic in vivo system may be very different from the static in vitro values when repartitioning from blood cells is far slower than clearance of drug in plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of pharmacology and experimental therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.