Abstract

Breast cancer is the most frequently diagnosed tumor type and the primary leading cause of cancer deaths in women worldwide and multidrug resistance is the major obstacle for breast cancer treatment improvement. Emerging evidence suggests that metformin, the most widely used antidiabetic drug, resensitizes and cooperates with some anticancer drugs to exert anticancer effect. However, there are no data regarding the reversal effect of metformin on chemoresistance in breast cancer. In the present study, we investigated the resistance reversal effect of metformin on acquired multidrug-resistant breast cancer cells MCF-7/5-Fu derived from MCF-7 breast cancer cells and innate multidrug-resistant MDA-MB-231 breast cancer cells, and we found that metformin resensitized MCF7/5-FU and MDA-MB-231 to 5-fluorouracil (5-FU), adriamycin, and paclitaxel. We also observed that metformin reversed epithelial-mesenchymal transition (EMT) phenotype and decreased the invasive capacity of MCF7/5-FU and MDA-MB-231 cells. However, there were no significant changes upon metformin-treated MCF7 cells. Moreover, we found metformin treatment activated AMPK signal pathway in MCF7/5-FU and MDA-MB-231 cells and compound C, the AMPK inhibitor, could partly abolish the resensitization and EMT reversal effect of metformin. To the best of our knowledge, we are the first to report that metformin can resensitize multidrug-resistant breast cancer cells due to activating AMPK signal pathway. Our study will help elucidate the mechanism of chemoresistance and establish new strategies of chemotherapy for human breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.