Abstract

Metformin is a drug for treating type 2 diabetes mellitus (T2DM). Recently, metformin has been shown to reduce the risks of asthma-associated outcomes and asthma deterioration, thereby holding promise as a superior medicine for diabetic patients with asthma. However, the mechanism by which metformin reduces diabetic asthma is yet to be clarified. This study aimed at ascertaining the downstream molecules underlying the effect of metformin on the activation of mast cells (MCs) and airway reactivity in a concomitant diabetic and asthmatic rat model. A T2DM model was induced utilizing ahigh-fat diet and streptozotocin. Then, 10% ovalbumin was utilized to stimulate asthma-like pathology in the T2DM rats. RBL-2H3 cells were induced by anti-dinitrophenyl-specific immunoglobulin E for constructing an in vitro model. Luciferase assay and RNA immunoprecipitation (IP) assay were conducted to identify the interaction between microRNA-152-3p (miR-152-3p) and DNA methyltransferase 1 (DNMT1), while chromatin IP to identify the binding of DNMT1 to insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF-1R) promoters. The effects of metformin on both pathological changes in vivo and biological behaviors of cells were evaluated. Using gain- and loss-of-function approaches, we assessed the role of the two interactions in the metformin-induced effect. It was suggested that metformin could impede the MC activation and airway resistance in the concomitant diabetic and asthmatic rats. Additionally, metformin downregulated IR and IGF-1R through DNMT1-dependent methylation to repress MC activation and airway resistance. DNMT1 was testified to be a target gene of miR-152-3p. Furthermore, miR-152-3p-induced silencing of DNMT1 was blocked by metformin, hence restraining MC activation and airway resistance. The findings cumulatively demonstrate that metformin downregulates IR/IGF-1R to block MC activation and airway resistance via impairing the binding affinity between miR-152-3p and DNMT1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call