Abstract

BackgroundAtrial lipid metabolic remodeling is critical for the process of atrial fibrillation (AF). Abnormal Fatty acid (FA) metabolism in cardiomyocytes is involved in the pathogenesis of AF. MET (Metformin), an AMPK (AMP-activated protein kinase) activator, has been found to be associated with a decreased risk of AF in patients with type 2 diabetes. However, the specific mechanism remains unknown.MethodsFifteen mongrel dogs were divided into three groups: SR, ARP (pacing with 800 beats/min for 6 h), ARP plus MET (treated with MET (100 mg/kg/day) for two weeks before pacing). We assessed metabolic factors, speed limiting enzymes circulating biochemical metabolites (substrates and products), atrial electrophysiology and accumulation of lipid droplets.ResultsThe expression of AMPK increased in the ARP group and significantly increased in the MET+ARP group comparing to the SR group. In the ARP group, the expressions of PPARα、PGC-1α and VLCAD were down-regulated, while the concentration of free fatty acid and triglyceride and the lipid deposition in LAA (left atrial appendage) increased. Moreover, AERP and AERPd have also been found abnormally in this process. Pretreatment with MET before receiving ARP reversed the alterations aforementioned.ConclusionsThe FA metabolism in LAA is altered in the ARP group, mainly characterized by the abnormal expression of the rate-limiting enzyme. Metformin reduces lipid accumulation and promotes β-oxidation of FA in AF models partially through AMPK/PPAR-α/VLCAD pathway. Our study indicates that MET may inhibit the FA lipid metabolic remodeling in AF.

Highlights

  • Atrial lipid metabolic remodeling is critical for the process of atrial fibrillation (AF)

  • Metformin prevents atrial rapid pacing (ARP)-induced fatty acid metabolic disorders in Left atrial appendage (LAA) We examined the effect of metformin on Fatty acid (FA) metabolism

  • These data implied that metformin alleviates ARP-induced fatty acid metabolic disorders in LAA

Read more

Summary

Introduction

Atrial lipid metabolic remodeling is critical for the process of atrial fibrillation (AF). Abnormal Fatty acid (FA) metabolism in cardiomyocytes is involved in the pathogenesis of AF. The initiation and progression of AF are caused by atrial remodeling, including structural, electrical and contractile remodeling. All of these have been shown to contribute continuously to the self-perpetuating nature of AF (‘AF begets AF’) [1, 2]. Peroxisome proliferator-activated receptor-α (PPAR-α), a member of the nuclear hormone receptor superfamily, is a critical regulator of myocardial energy metabolism. PPAR-α is preferentially expressed in tissues with high FA utilization like heart and muscle [6]. Energy utilization in the heart is transcriptionally controlled in

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call