Abstract

Metformin inhibits ATP production in mitochondria and this may be involved in the anti-hyperglycemic effects of the drug. Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase that regulates the function of the electron transport chain and maintains basal ATP yield. We hypothesized that metformin treatment could diminish mitochondrial ATP production through downregulation of SIRT3 expression. Glucagon and cAMP induced SIRT3 mRNA in mouse primary hepatocytes. Metformin prevented SIRT3 induction by glucagon. Moreover, metformin downregulated constitutive expression of SIRT3 in primary hepatocytes and in the liver in vivo. Estrogen related receptor alpha (ERRα) mediates regulation of Sirt3 gene by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). ERRα mRNA expression was regulated in a similar manner as SIRT3 mRNA by glucagon, cAMP and metformin. However, a higher metformin concentration was required for downregulation of ERRα than SIRT3. ERRα siRNA attenuated PGC-1α mediated induction of SIRT3, but did not affect constitutive expression. Overexpression of the constitutively active form of AMP-activated protein kinase (AMPK) induced SIRT3 mRNA, indicating that the SIRT3 downregulation by metformin is not mediated by AMPK. Metformin reduced the hepatocyte ATP level. This effect was partially counteracted by SIRT3 overexpression. Furthermore, metformin decreased mitochondrial SIRT3 protein levels and this was associated with enhanced acetylation of several mitochondrial proteins. However, metformin increased mitochondrial mass in hepatocytes. Altogether, our results indicate that metformin attenuates mitochondrial expression of SIRT3 and suggest that this mechanism is involved in regulation of energy metabolism by metformin in the liver and may contribute to the therapeutic action of metformin.

Highlights

  • Biguanide class drug metformin is one of the most prescribed drugs for treatment of type 2 diabetes worldwide

  • We investigated if glucagon, a hormone upregulating proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a) expression and induced by fasting, affects Sirtuin 3 (SIRT3)

  • Mouse primary hepatocytes were treated with glucagon (5 mg/ml) and SIRT3 mRNA expression was measured at several time points up to 72 hours

Read more

Summary

Introduction

Biguanide class drug metformin is one of the most prescribed drugs for treatment of type 2 diabetes worldwide. Metformin has been reported to have numerous cellular effects in multiple tissues, but the main anti-hyperglycemic effect is believed to be due to the suppression of hepatic glucose production [1]. AMP-activated protein kinase (AMPK) is activated by metformin and has been a strong candidate in mediating therapeutic effects of the drug [2]. A recent study showed that AMPK deficiency did not abolish the effects of metformin on hepatic glucose production, indicating that the role of AMPK is dispensable [3]. Neither AMPK nor upstream kinase serine/threonine kinase 1 (LKB1) are direct targets of metformin [1,4]. It has been suggested that a decreased energy state and reduced intracellular ATP content are the primary mechanisms mediating metformin action on hepatic glucose production [3]. Metformin inhibits Complex I of the mitochondrial respiratory chain, but the exact mechanisms and pathways involved are unclear [5,6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call