Abstract
Oxidative stress plays a major role in the pathogenesis and in the onset of macrovascular complications of diabetes. We previously reported that the antihyperglycaemic drug metformin was able to decrease significantly intracellular reactive oxygen species (ROS) production of bovine aortic endothelial cells (BAEC) activated by high levels of glucose and angiotensin II (ANG). The aim of the present study was to investigate whether the antioxidant effect of metformin on BAEC could be mediated through a modulation of protein kinase C (PKC) activity, which plays a key role in the pathophysiology of diabetes. The effects of metformin on intracellular ROS production, PKC translocation and activity were studied on endothelial cells stimulated by PMA (a direct PKC activator), ANG or high levels of glucose as pathophysiological stimuli of endothelial dysfunction in diabetes. We showed that metformin decreased ROS production on PMA-, ANG- and glucose-stimulated BAEC in a similar manner to that obtained by PKC specific inhibitors (calphostin C, chelerythrine) alone. On the other hand, metformin reduced both PKC membrane translocation and kinase activity in ANG-stimulated cells. In PMA-activated cells, metformin reduced membrane PKC activity but we did not observe any alteration of PKC membrane translocation. Finally, in vitro incubation with purified PKC indicated that metformin had no direct effect on PKC activity. Taken together, our results suggest that metformin exerted intracellular antioxidant properties by decreasing ROS production through the inhibition of PKC activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.