Abstract

Metformin is an anti-diabetic agent that has been reported to decrease plasma glucose by multiple mechanisms, such as decreasing hepatic glucose production and activating peripheral glucose utilization. In order to elucidate the primary glucose-lowering mechanism of metformin, the present study focused on a comparison of the acute effect between metformin and CS-917 as a direct gluconeogenesis inhibitor. We examined the effect of metformin and CS-917 on glucose turnover in intravenous glucose-loaded Goto-Kakizaki (GK) rats, and on gluconeogenesis and glucose utilization in rat hepatocytes. Moreover, the glucose-lowering effect of metformin and CS-917 was compared in a fed and a fasted state in GK rats. In intravenous glucose-loaded GK rats, metformin and CS-917 lowered plasma glucose by increasing the glucose disappearance rate and by decreasing the glucose appearance rate, respectively. In rat hepatocytes, CS-917 but not metformin suppressed gluconeogenesis (IC 50 = 0.136 µM). Instead, metformin dose-dependently increased glucose uptake and the following lactate production at 30 to 100 µM. Metformin decreased plasma glucose more in a fed state than in a fasted state in GK rats. CS-917, however, decreased plasma glucose more in a fasted state. These results confirm that metformin primarily decreases plasma glucose not by gluconeogenesis inhibition but by activating glucose utilization in GK rats. Moreover, metformin and CS-917 have different glucose-lowering effects depending on the nutrient state, which may be related to differences in their mechanisms of action. Such differences in action may have implications for metformin and CS-917 in the treatment of type 2 diabetes patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.