Abstract

Intestinal barrier dysfunction is a key etiologic factor of irritable bowel syndrome (IBS). Metformin improves intestinal barrier function, although the underlying mechanism has yet to be fully explained. This study evaluates the protective effect of metformin on colonic barrier integrity and explores the underlying cellular mechanisms. IBS-like rats were induced by maternal separation. Metformin was administered daily by gavage at 08:30, and rat pups were then separated from their mother. Visceral hyperalgesia and depression-like behaviors were evaluated by colorectal distension, sucrose preference tests, and forced swimming tests. Intestinal integrity was analyzed using sugar probes and transmission electron microscopy. Inflammatory factors and the levels of corticotropin-releasing factor were assessed by PCR and ELISA. The number of mast cells was evaluated by toluidine blue staining. Protein expression and localization were determined using Western blot and immunochemistry. Metformin pretreatment (a) reduced visceral hypersensitivity to colorectal distension, immobility time and enhanced sucrose consumption; (b) decreased urine lactulose/mannitol ratio and sucralose output; (c) inhibited the dilation of tight junction and prevented claudin-4 translocation; (d) inhibited mast cell activation and downregulated the expression of IL-6, IL-18, tryptase, PAR-2, and ERK activation; (e) inhibited claudin-4 phosphorylation at serine sites and interactions between clau-4 and ZO-1. Metformin may block mast cell activation to reduce PAR-2 expression and subsequently inhibit ERK activation and clau-4 phosphorylation at serine sites to normalize the interaction of clau-4 and ZO-1 and clau-4 distribution. Metformin may be clinically beneficial for patients with IBS or IBS-like symptoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call