Abstract
Pancreatic cancer (PC) is a major contributor to global cancer-related mortality. While the inhibitory effect of metformin (Met) on PC has been reported, the underlying mechanism remains elusive. We established BxPC-3 cell models with miR-378a-3p and VEGFA knockdown. The expression of miR-378a-3p, VEGFA, and RGC-32 in PC and normal tissues was analyzed using GEPIA, TCGA databases. Cell proliferation, invasion, migration, and apoptosis were assessed through CCK8, Transwell, wound healing, and flow cytometry. Significantly lower expression of miR-378a-3p was observed in PC tissues and cells. Knockdown of miR-378a-3p reversed the impact of Met on cell viability in PANC-1 and BxPC3. VEGFA emerged as a potential regulator in PC and a downstream target of miR-378a-3p. The interaction between VEGFA and RGC-32 played a crucial role in PC regulation. Knockdown of VEGFA substantially reversed the impact of miR-378a-3p inhibitor on tumor growth and the epithelial-mesenchymal transition (EMT) process. Moreover, knockdown of VEGFA effectively countered the influence of miR-378a-3p inhibitor on cell viability and the EMT process in BxPC3 cells. Met exerted inhibitory effects on PC through the miR-378a-3p/VEGFA/RGC-32 pathway. Strategies targeting the miR-378a-3p/VEGFA/RGC-32 axis represent a novel avenue for the prevention and treatment of PC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.