Abstract
Repeat associated non-AUG (RAN) translation is found in a growing number of microsatellite expansion diseases, but the mechanisms remain unclear. We show that RAN translation is highly regulated by the double-stranded RNA-dependent protein kinase (PKR). In cells, structured CAG, CCUG, CAGG, and G4C2 expansion RNAs activate PKR, which leads to increased levels of multiple RAN proteins. Blocking PKR using PKR-K296R, the TAR RNA binding protein or PKR-KO cells, reduces RAN protein levels. p-PKR is elevated in C9orf72 ALS/FTD human and mouse brains, and inhibiting PKR in C9orf72 BAC transgenic mice using AAV-PKR-K296R or the Food and Drug Administration (FDA)-approved drug metformin, decreases RAN proteins, and improves behavior and pathology. In summary, targeting PKR, including by use of metformin, is a promising therapeutic approach for C9orf72 ALS/FTD and other expansion diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.