Abstract

Background/PurposeType 2 diabetes and obesity increase the risk of developing colorectal cancer. Metformin may reduce colorectal cancer but the mechanisms mediating this effect remain unclear. In mice and humans, a high-fat diet (HFD), obesity and metformin are known to alter the gut microbiome but whether this is important for influencing tumor growth is not known. MethodsMice with syngeneic MC38 colon adenocarcinomas were treated with metformin or feces obtained from control or metformin treated mice. ResultsWe find that compared to chow-fed controls, tumor growth is increased when mice are fed a HFD and that this acceleration of tumor growth can be partially recapitulated through transfer of the fecal microbiome or in vitro treatment of cells with fecal filtrates from HFD-fed animals. Treatment of HFD-fed mice with orally ingested, but not intraperitoneally injected, metformin suppresses tumor growth and increases the expression of short-chain fatty acid (SCFA)-producing microbes Alistipes, Lachnospiraceae and Ruminococcaceae. The transfer of the gut microbiome from mice treated orally with metformin to drug naïve, conventionalized HFD-fed mice increases circulating propionate and butyrate, reduces tumor proliferation, and suppresses the expression of sterol response element binding protein (SREBP) gene targets in the tumor. ConclusionThese data indicate that in obese mice fed a HFD, metformin reduces tumor burden through changes in the gut microbiome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.