Abstract

Preclinical and clinical studies over the past several decades have indicated the potential value of metformin, a widely utilized treatment for Type 2 diabetes, in prostate cancer therapy. Notably, these studies demonstrated metformin's pleiotropic effects on several molecular and metabolic pathways, such as androgen signaling, cell cycle, and cellular bioenergetics. In this study we investigated the role of metformin in regulating intracellular redox status and cell survival in LNCaP prostate cancer cells. The cytotoxic effects of metformin with or without the presence of SBI0206965 (AMPK inhibitor) on LNCaP cells were determined using MTT and trypan blue exclusion assays. Seahorse XP extracellular analysis, Liquid Chromatography/ Mass Spectrophotometry (LC/MS), and 2,7- and Dichlorofluoresin diacetate (DCFDA) assay were used to assess the effects of metformin on cellular bioenergetics, redox status, and redox-related metabolites. mRNA expression and protein concentration of redox-related enzymes were measured using Real Time-qPCR and ELISA assay, respectively. Independently of AMP-activated protein kinase, metformin exhibited a dose- and time-dependent inhibition of LNCaP cell survival, a response mitigated by glutathione or N-acetylcysteine (ROS scavengers) treatment. Notably, these findings were concomitant with a decline in ATP levels and the inhibition of oxidative phosphorylation. The results further indicated metformin's induction of reactive oxygen species, which significantly decreased glutathione levels and the ratio of reduced to oxidized glutathione, as well as the transsulfuration metabolite, cystathionine. Consistent with an induction of oxidative stress condition, metformin increased mRNA levels of the master redox transcription factor Nrf-2 (nuclear factor erythroid-derived 2-like), as well as transsulfuration enzymes cystathionine beta-synthase and cystathionase and GSH synthesis enzymes γ-glutamylcysteine synthetase and glutathione synthetase. Our findings highlight multiple mechanisms by which metformin-induced formation of reactive oxygen species may contribute to its efficacy in prostate cancer treatment, including promotion of oxidative stress, Nrf2 activation, and modulation of redox-related pathways, leading to its anti-survival action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.