Abstract
Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) is a key regulator of sperm function and physiological metabolism. Metformin, an inexpensive and effective antioxidant, is known to play an important role in the activation of AMPK. Therefore metformin has potential to improve sperm cryopreservation. The aim of this study was to investigate the effect of metformin during semen cryopreservation of sheep and to find the most effective concentration in freezing extender. Semen were cryopreserved with extender containing different concentrations of metformin (0, 0.25, 0.5, 1.0, 2.0 and 4.0 mmol/L). Sperm motility, acrosome integrity and plasma membrane integrity were measured after semen freezing and thawing. All results showed that sperm quality was significantly increased in the 1.0 mmol/L metformin-treated group compared with the control group (P < 0.05). In addition, the study showed that metformin effectively reduced the content of malondialdehyde (MDA) and reactive oxygen species (ROS), and increased the activity of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) of freeze-thawed sperm (P < 0.05). The optimal concentration of metformin was 1.0 mmol/L. Moreover, the results showed that AMPK was localized in the acrosome region, junction and midsection of sperm, and p-AMPK was distributed in the post-acrosomal region, junction and midsection. Western blot analysis indicated that 1.0 mmol/L metformin stimulated the phosphorylation of AMPK in sperm. Further results showed that 1.0 mmol/L metformin significantly increased the mitochondrial membrane potential (ΔΨm), ATP content, glucose uptake and lactate efflux of post-thawed sperm through the AMPK pathway, improved sperm quality, and increased the cleavage rate of in vitro fertilization (P < 0.05).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.