Abstract

BackgroundMetformin is the first line of oral antidiabetic drug in the biguanide class for treatment of type 2 diabetes. Increasing evidence has suggested that it is a potential anti-tumor drug. However, the mechanisms underlying inhibiting tumor development remain elusive, especially in bladder tumors.MethodsT24 and J82 cell lines were used as an in vitro model, and 24 female SD rats were used to build an N-methyl-N-nitrosourea (MNU)-induced orthotopic rat bladder cancer model. Transfection of lentivirus-based shRNA was used to construct the STAT3-KNOCKDOWN T24 cell line. After metformin treatment, the viability of bladde cancer cells was determined by CCK8. Cell cycle distribution and apoptosis were assessed by flow cytometry. The migration and invasion abilities of cells were evaluated by wound healing and transwell asssays. The inactivation of stat3 pahtway was examined by qRTPCR, western blot and Immunofluorescence.ResultsMetformin can effectively inhibit precancerous progression to invasive cancer in an MNU-induced rat orthotopic bladder tumor model, although it could not completely suppress normal cells transforming into tumor cells. While the MNU could induce 50 % rats (4/8) to develop invasive bladder cancers, the rats co-administrated with metformin failed to develop invasive tumors but retained at precancerous or non-invasive stages, exhibiting as dysplasia, papillary tumor and/or carcinoma in situ (CIS). Accordingly, phosphorylation of signal transducer and activator of transcription 3 (STAT3), which is a well known oncogene, was significantly inhibited in the tumors of rats treated with metformin. In vitro experiments revealed that the metformin could efficiently inhibit STAT3 activation, which was associated with the cell cycle arrest, reduction of cell proliferation, migration and invasiveness, and increase in apoptotic cell death of bladder cancer cell lines.ConclusionsThese findings provide for the first time the evidence that metformin can block precancerous lesions progressing to invasive tumors through inhibiting the activation of STAT3 pathway, and may be used for treatment of the non-invasive bladder cancers to prevent them from progression to invasive tumors.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-015-0183-0) contains supplementary material, which is available to authorized users.

Highlights

  • Bladder cancer is the most common malignancy of the urinary tract, ranking the 7th most common cancer in men and the 17th in women [1]

  • It works by targeting the enzyme AMP activated protein kinase (AMPK), which is regulated by a protein kinase known as Liver Kinase B1 (LKB1), and inducing muscles to take up glucose from the blood [5]

  • Metformin can inhibit precancerous progression of rat bladder tumor Because metformin was observed to inhibit proliferation, viability, migration and invasion of bladder cancer cells in vitro, we explored whether it had inhibitory effects on bladder carcinogenesis, using the MNU-induced orthotopic rat bladder cancer model

Read more

Summary

Introduction

Bladder cancer is the most common malignancy of the urinary tract, ranking the 7th most common cancer in men and the 17th in women [1]. 1, 1-Dimethylbiguanide hydrochloride, is one of the most popular drugs which are used for type 2 diabetes therapy. It works by targeting the enzyme AMP activated protein kinase (AMPK), which is regulated by a protein kinase known as Liver Kinase B1 (LKB1), and inducing muscles to take up glucose from the blood [5]. Some recent retrospective studies have demonstrated that metformin could exert protective effects on recurrence in NMIBC patients and cancer-specific mortality in MIBC patients treated with radical cystectomy [9, 10]. The effects of metformin on bladder cancer have not been adequately investigated and, in particular, the mechanisms underlying the metformin inhibiting bladder cancer remain to be elucidated. The mechanisms underlying inhibiting tumor development remain elusive, especially in bladder tumors

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.