Abstract

AimsThe aim of this study was to investigate whether and how metformin ameliorated endothelial dysfunction induced by fluctuating glucose (FG) in human umbilical vein endothelial cells (HUVECs). MethodsHUVECs, which were exposed to FG to induce endothelial dysfunction, were incubated with nitric oxide synthase (NOS) inhibitor N-nitro-l-arginine-methyl ester (l-NAME), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin, metformin and/or adenosine monophosphate-activated protein kinase (AMPK) inhibitor compound C. The oxidative stress and endothelial NOS (eNOS) coupling were evaluated. ResultsFG induced endothelial dysfunction as indicated by increased reactive oxygen species (ROS) generation and decreased nitric oxide (NO) production. Although FG increased eNOS phosphorylation, uncoupled eNOS was evidenced by downregulated guanosine 5′-triphosphate cyclohydrolase 1 (GTPCH1) and tetrahydrobiopterin (BH4) levels. FG also upregulated the level of p47-phox, a subunit of NADPH oxidase. Similar to l-NAME and apocynin, metformin ameliorated the FG-induced endothelial dysfunction by decreasing ROS generation. Furthermore, metformin recoupled eNOS through upregulating GTPCH1 and BH4 levels, and attenuated the upregulation of p47-phox in FG-treated HUVECs. Addition of compound C abolished the above effects of metformin. ConclusionMetformin improves the FG-induced endothelial dysfunction in HUVECs. The protective effect of metformin may be mediated through activation of GTPCH1-mediated eNOS recoupling and inhibition of NADPH oxidase via an AMPK-dependent pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.