Abstract

Cadmium (Cd), a common environmental and occupational toxicant, is an important risk factor for hearing loss. After exposure, Cd accumulates in the inner ear and induces spiral ganglion neuron (SGN) degeneration; however, the underlying mechanisms are poorly understood. Dysfunctional autophagy has been implicated in many neurodegenerative diseases, including Cd-induced neurotoxicity. Metformin has been validated to confer not only anti-hyperglycaemic but also neuroprotective effects. However, the relationship between autophagy dysfunction, SGN degeneration, and the effect of metformin on Cd-induced SGN neurotoxicity has not yet been established. In this study, we demonstrate that metformin notably attenuates Cd-evoked SGN degeneration by restoring impaired autophagy flux, as evidenced by the suppression of Cd-induced elevation of autophagy markers microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and autophagy substrate protein p62 in degenerated SGN. Blockage of autophagy flux by chloroquine abolished metformin-induced neuroprotection against Cd-induced neurotoxicity in SGN. The results of this study reveal that autophagy dysfunction is an important component of Cd-induced SGN degeneration, and metformin may be a potential protective agent for attenuating SGN degeneration following Cd exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call