Abstract
AimsOxidative stress and inflammation have been linked to doxorubicin (DOX)-induced cardiotoxicity, while the exact molecular processes are currently under investigation. The goal of this study is to investigate Metformin's preventive role in cardiotoxicity induced by DOX. Materials and methodsMale albino mice were divided randomly into 4 groups. Metformin (Met) 200 mg/kg orally (p.o.) was given either alone or when combined with a single DOX (15 mg/kg; i.p.). A control group of 5 mice was also provided. Met was initiated 7 days before DOX, lasting for 14 days. Besides, docking studies of Met towards HMGB1, NF-kB, and caspase 3 were performed. Key findingsHeart weight, cardiac troponin T (cTnT), creatine kinase Myocardial Band (CK-MB) levels, malondialdehyde (MDA), and nitric oxide (NO) contents all increased significantly when comparing the DOX group to the control normal group. Conversely, there was a substantial decline in superoxide dismutase (SOD) and glutathione peroxidase (GSH). DOX group depicts a high expression of TLR4, HMGB1, and caspase 3. Immunohistochemical staining revealed an increase in NLRP3 inflammasome and NF-κB expressions alongside histopathological modifications. Additionally, Met dramatically decreased cardiac weight, CK-MB, and cTnT while maintaining the tissues' histological integrity. Inflammatory biomarkers, including HMGB1, TLR4, NF-κB, inflammasome, and caspase 3 were reduced after Met therapy. Furthermore, molecular docking studies suggested the antagonistic activity of Met towards HMGB1, NF-κB, and caspase 3 target receptors. SignificanceAccording to recent evidence, Met is a desirable strategy for improving cardiac toxicity produced by DOX by inhibiting the HMGB1/NF-κB inflammatory pathway, thus preserving heart function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.