Abstract

Benzo[a]pyrene (B[a]P) is neurotoxic; however, the mechanism and prevention are still unclear. In this study, we assessed the intervention effect of metformin (MET) on cognitive dysfunction in mice induced by B[a]P from the perspective of glucolipid metabolism. Forty-two male healthy ICR mice were randomly categorized into 6 groups and were gavaged with B[a]P (0, 2.5, 5, or 10 mg/kg), 45 times for 90 days. The controls were gavaged with edible peanut oil, and the intervention groups were co-treated with B[a]P (10 mg/kg) and MET (200 or 300 mg/kg). We assessed the cognitive function of mice, observed the pathomorphological and ultrastructural changes, and detected neuronal apoptosis and glucolipid metabolism. Results showed that B[a]P dose-dependently induced cognitive impairment, neuronal damage, glucolipid metabolism disorder in mice, and enhanced proteins of fat mass and obesity-associated protein (FTO) and forkhead box protein O6 (FoxO6) in the cerebral cortex and liver, which were alleviated by the MET intervention. The findings indicated the critical role of glucolipid metabolism disorder in the cognitive impairment in mice caused by B[a]P and the prevention of MET against B[a]P neurotoxicity by regulating glucolipid metabolism via restraining FTO/FoxO6 pathway. The finding provides a scientific basis for the neurotoxicity and prevention strategies of B[a]P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.