Abstract

Long-term exposure to environmental aluminum was found to be related to the occurrence and development of neurodegenerative diseases. Energy metabolism disorders, one of the pathological features of neurodegenerative diseases, may occur in the early stage of the disease and are of potential intervention significance. Here, sub-chronic aluminum exposure mouse model was established, and metformin was used to intervene. We found that sub-chronic aluminum exposure decreased the protein levels of phosphorylation AMPK (p-AMPK), glucose transporter 1 (GLUT1) and GLUT3, taking charge of glucose uptake in the brain, reduced the levels of lactate shuttle-related proteins monocarboxylate transporter 4 (MCT4) and MCT2, as well as lactate content in the cerebral cortex, while increased hypoxia-inducible factor-1α (HIF-1α) level to drive downstream pyruvate dehydrogenase kinase 1 (PDK1) expression, thereby inhibiting pyruvate dehydrogenase (PDH) activity, and ultimately led to ATP depletion, neuronal death, and cognitive dysfunction. However, metformin could rescue these injuries. Thus, it came to a conclusion that aluminum could damage glucose uptake, interfere with astrocyte-neuron lactate shuttle (ANLS), interrupt the balance in energy metabolism, and resulting in cognitive function, while metformin has a neuroprotective effect against the disorder of energy metabolism caused by aluminum in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call