Abstract
Metformin is one of the most effective therapies for treating type 2 diabetes and has been shown to also attenuate aging and age-related disorders. In this study, we explored the relationship between metformin and DNA damage repair in ionizing radiation (IR)-induced damage of human aortic endothelial cells (HAECs). Metformin treatment suppressed IR-induced senescence phenotypes, such as increased senescent-associated β-galactosidase (SA β-gal) activity and decreased tube formation and proliferation. Moreover, metformin increased BRCA1-associated RING domain protein 1 (BARD1) and RAD51 expression in both aging and IR-exposed cells. Metformin-treated cells exhibited higher levels of the BRCA1-BARD1-RAD51 complex during irradiation, even in the presence of compound C, an AMP-activated protein kinase inhibitor. BARD1 knockdown confirmed its critical role in metformin-mediated inhibition of endothelial senescence. Metformin increased blood vessel sprouting and decreased SA β-gal activity in mouse aortas. Collectively, our findings provide new insights into how metformin can prevent endothelial cell senescence by promoting BARD1-related DNA damage repair, suggesting that metformin may be an effective anti-aging agent and a promising therapeutic for protecting against radiation-induced cardiotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.