Abstract

Metformin is the most frequently used drug for the treatment of type-II diabetes. As metformin has been reported to cross the blood-brain barrier, brain cells will encounter this drug. To test whether metformin may affect the metabolism of neurons, we exposed cultured rat cerebellar granule neurons to metformin. Treatment with metformin caused a time- and concentration-dependent increase in glycolytic lactate release from viable neurons as demonstrated by the three-to fivefold increase in extracellular lactate concentration determined after exposure to metformin. Half-maximal stimulation of lactate production was found after incubation of neurons for 4h with around 2mM or for 24h with around 0.5mM metformin. Neuronal cell viability was not affected by millimolar concentrations of metformin during acute incubations in the hour range nor during prolonged incubations, although alterations in cell morphology were observed during treatment with 10mM metformin for days. The acute stimulation of neuronal lactate release by metformin was persistent upon removal of metformin from the medium and was not affected by the presence of modulators of adenosine monophosphate activated kinase activity. In contrast, rabeprazole, an inhibitor of the organic cation transporter 3, completely prevented metformin-mediated stimulation of neuronal lactate production. In summary, the data presented identify metformin as a potent stimulator of glycolytic lactate production in viable cultured neurons and suggest that organic cation transporter 3 mediates the uptake of metformin into neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call