Abstract

Conventional straight fibers spun from carbon nanotubes have rather limited deformability; creating a spiral structure holds the promise to break this shape restriction and enhance structural flexibility. Here, we report up to one meter-length threads containing purely single-walled nanotubes twisted into spiral loops (about 1.3 × 10(5) loops per meter) with tunable fiber diameters and electrical conductivity. Because of significant increase of the loop number and long-range homogeneity, the fibers display many unique properties (e.g., self-shrinking and forming extremely entangled structure, fast stretching with great resilience, large-degree axial and lateral deflection, and excellent fatigue resistance) that are difficult to achieve in straight yarns or short helical segments. They also have potential applications as macroscopic fiber-shaped temperature sensors and deformable gas sensors. Our long spiral fibers may be configured into versatile structures such as nanotextiles for developing wearable electronics and multifunctional fabrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.