Abstract

AbstractWe utilize ocean 10‐m wind speed (U10m) from the microwave Multi‐sensor Advanced Climatology data set to examine the coupling between convective cloud and precipitation processes, synoptic state, and U10m and to evaluate the representation of U10m in global climate models (GCMs). We find that midlatitude U10m is underestimated by GCMs relative to observations. We examine two potential mechanisms to explain this model behavior: cold pool formation in cold air outbreaks (CAOs) associated with downdrafts that enhance U10m and sea surface temperature (SST) gradients affecting U10m through thermally forced surface winds at regional scales. When the effects of the CAO index (M) and SST gradients on U10m are accounted for, a relationship between GCM horizontal resolution and U10m appears. The strongest correlation between resolution and U10m is over the western boundary currents characterized by frequent CAOs atop strong SST gradients which drives the strongest surface fluxes on Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.