Abstract

Lake Urmia, in northwest Iran, is the second most saline lake in the world. During the past two decades, the level of water has markedly decreased. In this paper, climate of the lake region is investigated by using data from four meteorological stations near the lake. The data include climatic parameters such as temperature, precipitation, humidity, wind speed, sunshine hours, number of rain days, and evaporation. Climate around the lake is examined by way of climate classification in the periods before and after the reduction in water level. Rainfall in the lake catchment is also evaluated using both gauge and satellite data. The results show a significant decreasing trend in mean annual precipitation and wind speed and an increasing trend in annual average temperature and sunshine hours at the four stations. Precipitation and wind speed have decreased by 37 mm and 2.7 m/s, respectively, and the mean annual temperature and sunshine hours have increased by 1.4 °C and 41.6 days, respectively, over these six decades. Only the climate of the Tabriz region is seen to have significantly changed, going from semiarid to arid. Gauge records and satellite data show a large-scale decreasing trend in rainfall since 1995. The correlation between rainfall and year-to-year changes in lake level is 0.69 over the period 1965 to 2010. The relationship is particularly strong from the early 1990s to 2005. This suggests that precipitation has played an important role in the documented decline of the lake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.