Abstract

Numerical calculations, scale model experiments and real-life implementations have shown that the insertion of a closely spaced array of low parallel walls of finite dimension beside a road is potentially useful for road traffic noise abatement. However, previous studies did not consider atmospheric effects. In this work, numerical techniques have been used to predict the sound reduction provided by a low parallel wall structure, subject to wind and temperature related atmospheric effects. Three full-wave prediction schemes show very good agreement when looking at the insertion loss of a low 6m wide parallel wall structure, consisting of 24 regularly spaced 0.2-m high rigid walls. Meteorological effects are predicted not to deteriorate the insertion loss (relative to rigid flat ground) of the parallel wall array in the low frequency range. However, at high sound frequencies the insertion loss is strongly reduced by downward refraction at a distance of 50m in case of strong wind. Consequently, overall A-weighted road traffic noise insertion loss will be significantly lower during wind episodes. Although weak turbulence does not alter the energy time-averaged insertion losses, strong turbulence reduces the noise shielding in the high frequency range also. As with conventional noise walls, when considering use of low parallel wall structures for noise reduction outdoors, even at short distances, atmospheric effects should be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call