Abstract

Sixteen crater samples were analyzed by radiochemical neutron activation analysis for Ge, Ir, Ni, Os, Pd and Re. Two impact melt rock samples from Clearwater East (22 km) showed strong, uniform enrichments in all elements except Ge, corresponding to 7.4% C1 chondrite material. Interelement ratios suggest that the meteorite was a C1 (or C2) chondrite, not an iron, stony iron, or chondrite of another type. An Ivory Coast tektite (related to the 10 km Bosumtwi crater) was enriched in Ir + Os and Ni to about 0.04 and 1.6% of C1 chondrite levels, but in the absence of data on country rocks, the meteorite cannot yet be characterized. Impact melt rock samples from Clearwater West (32km), Manicouagan (70km), and Mistastin (28 km) showed no detectable meteoritic component. Upper limits, as Cl chondrite equivalent, were Os ≤ 2 × 10 −3% (~0.01 ppb), Ni ≤ 2 × 10 −1% (~20 ppm). Possible causes are high impact velocity and/or a chemically inconspicuous meteorite (achondrite, Ir,Os-poor iron or stony iron). However, a more likely reason is that some fraction of the impact melt remains meteorite-free, especially at craters with central peaks. Clearwater East is the first terrestrial impact crater found to be associated with a stony meteorite. Apparently the consistent absence of stony projectiles at small craters (< 1 km diameter) reflects their destruction in the atmosphere, as proposed by Öpik.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.