Abstract

The rock pinnacles of the Meteora UNESCO World Heritage Site, Central Greece, are global geologic icons but are inadequately studied. Herein, we summarize decades of observations leading to a geohistory and geoenvironmental model of the unique conditions that were essential for their creation. Via this synthesis, we hope thus to encourage further specialized studies of the West Thessaly-Meteora region and to promote the value of updating geological research within World Heritage Sites. The Meteora rock spires owe their existence to ten critical geologic episodes spread over a period of nearly a billion years. Early Miocene sedimentary deposits that make up the rock spires are derived largely from the metamorphic core complex of the exhumed Pelagonian (~ Precambrian to Permian) continental complex and include fragments of “blueschist” derived from the Miocene exhumation of Mount Olympos (subducted Triassic-Eocene carbonate banks). The Miocene sediments are deposited as turbidite formations overlain by “Gilbert-style” deltaic conglomerates. The cobble-turbidite formations comprise submarine canyon fills. The rock spires themselves result from initiation of Pleistocene erosion into a peneplain estimated, very roughly, to ~ 700,000 years in age. This geoenvironment is similar to today’s active sedimentation ongoing off the Malibu coast of California in that the deposits include “Gilbert-style” deltas and turbidites originating from an exhuming metamorphic complex, simultaneously eroding and depositing within off-shore canyons. This comparative model requires a reinterpretation of the “consensus” interpretation of the Miocene oceanic margin south of the Meteora region to one hosting more active energetic deposition and a deeper basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call