Abstract

To investigate a Met-controlled allosteric module (AM) of neural generation as a potential therapeutic target for brain ischemia. We selected Markov clustering algorithm (MCL) to mine functional modules in the related target networks. According to the topological similarity, one functional module was predicted in the modules of baicalin (BA), jasminoidin (JA), cholic acid (CA), compared with I/R model modules. This functional module included three genes: Inppl1, Met and Dapk3 (IMD). By gene ontology enrichment analysis, biological process related to this functional module was obtained. This functional module participated in generation of neurons. Western blotting was applied to present the compound-dependent regulation of IMD. Co-immunoprecipitation was used to reveal the relationship among the three members. We used IF to determine the number of newborn neurons between compound treatment group and ischemia/reperfusion group. The expressions of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP-9) were supposed to show the changing circumstances for neural generation under cerebral ischemia. Significant reduction in infarction volume and pathological changes were shown in the compound treatment groups compared with the I/R model group (P<0.05). Three nodes in one novel module of IMD were found to exert diverse compound-dependent ischemic-specific excitatory regulatory activities. An anti-ischemic excitatory allosteric module (AME) of generation of neurons (AME-GN) was validated successfully in vivo. Newborn neurons increased in BJC treatment group (P<0.05). The expression of VEGF and MMP-9 decreased in the compound treatment groups compared with the I/R model group (P<0.05). AME demonstrates effectiveness of our pioneering approach to the discovery of therapeutic target. The novel approach for AM discovery in an effort to identify therapeutic targets holds the promise of accelerating elucidation of underlying pharmacological mechanisms in cerebral ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call