Abstract

Haemophilus parasuis is a common inhabitant of the upper respiratory tract of pigs, and the causative agent of Glässer’s disease. This disease is characterized by polyserositis and arthritis, produced by the severe inflammation caused by the systemic spread of the bacterium. After an initial colonization of the upper respiratory tract, H. parasuis enters the lung during the early stages of pig infection. In order to study gene expression at this location, we sequenced the ex vivo and in vivo H. parasuis Nagasaki transcriptome in the lung using a metatranscriptomic approach. Comparison of gene expression under these conditions with that found in conventional plate culture showed generally reduced expression of genes associated with anabolic and catabolic pathways, coupled with up-regulation of membrane-related genes involved in carbon acquisition, iron binding and pathogenesis. Some of the up-regulated membrane genes, including ABC transporters, virulence-associated autotransporters (vtaAs) and several hypothetical proteins, were only present in virulent H. parasuis strains, highlighting their significance as markers of disease potential. Finally, the analysis also revealed the presence of numerous antisense transcripts with possible roles in gene regulation. In summary, this data sheds some light on the scarcely studied in vivo transcriptome of H. parasuis, revealing nutritional virulence as an adaptive strategy for host survival, besides induction of classical virulence factors.Electronic supplementary materialThe online version of this article (doi:10.1186/s13567-015-0225-9) contains supplementary material, which is available to authorized users.

Highlights

  • Haemophilus parasuis is the causative agent of Glässer’s disease, an infectious disease of pigs characterised by fibrinous polyserositis

  • When metabolic pathways were inspected using Integrated Microbial Genomes (IMG) and BioCyc databases, genes involved in both aerobic and anaerobic respiration were detected, as well as formate and acetate fermentation genes. Sugar transport systems such as ATP-binding cassette (ABC) transport complexes and phosphotransferase systems (PTS) were encoded in its genome, as well as the genes associated to glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle and the pentose phosphate pathway

  • We have shown that the Nagasaki strain of H. parasuis modulates its gene expression during in vivo lung infection, and in an ex vivo lung infection model

Read more

Summary

Introduction

Haemophilus parasuis is the causative agent of Glässer’s disease, an infectious disease of pigs characterised by fibrinous polyserositis. Current strategies for disease control are based on rapid diagnostics, the use of antibiotics and to a lesser extent vaccines [1]. Antibiotics have been extensively used for this purpose, but current recommendations focus on reduction of their use to avoid the emergence of drug resistance [2,3,4]. Antibodies can control disease [5] in a mechanism that, at least in part, relies on opsonisation, which renders the virulent phagocytosis resistant strains susceptible to killing by alveolar macrophages [6]. As well as probiotics, are candidates to replace antimicrobials as preventive agents [7,8]. Virulence factors, especially those important for the initial stages of infection, are ideal targets for vaccine

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call