Abstract

Antibiotics are inevitably entered into anaerobic co-digestion (AcoD) system of food waste (FW) and sludge along with the addition of abundant antibiotic-containing activated sludge. However, the in-depth insights into antibiotics affecting AcoD performance have not comprehensively studied. In present study, the results showed that tetracycline (TC), sulfamethoxazole (SMZ) and erythromycin (ERY) inhibited and delayed methane production except for 5 mg/L ERY. By comparison, TC and SMZ significantly inhibited the cumulative methane yields (one-way ANOVA, p < 0.01), and the inhibition effects were magnified as the antibiotic level increased. Physicochemical and methane yield analysis indicated antibiotics inhibited hydrolysis process and delayed methanogenesis process, which was in line with the declined abundance of acetogenic Proteiniphilum and hydrogenotrophic Methanobacterium during AcoD. Furthermore, metatranscriptomic analysis demonstrated the microbial activities of major organic and energy metabolism were down-regulated under antibiotics exposure, thereby down-regulating the expressions of key coenzymes (coenzymes M, F420, methanofuran) biosynthesis for methanogenesis and methane metabolism. The declined methanogenesis activity was completely consistent with the inhibited activity of dominant Methanosarcina and methane production, proving the importance of Methanosarcina on methane production. This study provides new metatranscriptomic evidence into the effects of antibiotics on methanogenesis during AcoD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call